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1   |   INTRODUCTION

There is an existing problem in determining “normal” 
values of heart rate variability (HRV) parameters in 
frequency-domain or time-domain analyses. Relatively few 
investigators have used HRV parameters only in terms of 
changes after a given intervention, derived from baseline 
values, while not accounting for the fact that the evaluated 
parameters—or their extent—can be altered already at the 
beginning of the experiment. Such an approach is under-
standable given that no standard reference values for HRV 
in rats have been reported. Chizh (2015) also draws atten-
tion to this problem, where he points out the difference 
in the frequency ranges of various authors, from which 
spectral components were evaluated. This reflects the 

considerable variability in baseline or control values at the 
evaluation of the frequency-domain or time-domain HRV 
parameters themselves. In the present article, we focus on 
showing differences in control or baseline values of HRV 
parameters under different conditions in experiments in-
volving rats, which can influence the accuracy of the inter-
pretation of the results and the conclusions drawn.

2   |   HRV IN EXPERIMENTS 
INVOLVING RATS

The concept that HRV in rodents similarly reflects cardio-
vascular regulation in humans is supported. Low or miss-
ing resting vagus nerve tone in these species, however, 
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Abstract
The cardiovascular system is primarily controlled by the autonomic nervous sys-
tem, and any changes in sympathetic or parasympathetic activity also have an 
impact on myocardial activity. Heart rate variability (HRV) is a readily available 
metric used to assess heart rate control by the autonomic nervous system. HRV 
can provide information about neural (parasympathetic, sympathetic, reflex) and 
humoral (hormones, thermoregulation) control of myocardial activity. Because 
there are no relevant reference values for HRV parameters in rats in the scientific 
literature, all experimental results are only interpreted on the basis of changes 
from currently measured control or baseline HRV values, which are, however, 
significantly different in individual studies. Considering the significant variabil-
ity of published HRV data, the present study focused primarily on comparing 
control or baseline HRV values under different conditions in in vivo experiments 
involving rats. The aim of the study was therefore to assess whether there are dif-
ferences in the starting values before the experiment itself.
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can alter the quality and degree of HRV response after 
a given intervention. Although the origin of variation in 
the frequency-domain (Kuwahara et al., 1994) and time-
domain parameters of HRV (Aubert et al., 1999) appears 
to be analogous to humans, the degree of influence of the 
parasympathetic division may be greater in rats, as sup-
ported by several previous studies (Cerutti et al.,  1991; 
Japundzic et al., 1990).

On the contrary, (Rowan III et al.,  2007). queried to 
what extent changes in HRV can be used as a marker of 
increased or decreased sensitivity to a given intervention 
in rodent studies. Perhaps the most appropriate inter-
pretation of most short-term studies involving rodents is 
simply that intervention(s) may produce a systemic effect 
that is mediated either by the nervous system or by the 
heart or blood vessels, but this is pure speculation and not 
necessarily supported by concrete evidence. Neverthe-
less, HRV may still play an important mechanistic role in 
such research. To better understand the prognostic utility 
of HRV together with other electrocardiographic (ECG) 
endpoints, it is necessary to proceed from carefully con-
trolled experiments with known outcomes (Carnevali 
et al., 2019; Krüger et al., 2000; Sanyal et al., 2002). There-
fore, the development of new analytical techniques that 
connect temporal trends in cardiovascular parameters 
with pathological conditions is necessary—sometimes 
even essential—and may provide a basis for future stud-
ies using rats with large individual differences in vagus-
mediated HRV.

3   |   HRV: EVALUATION

In the study, we included the values of frequency and time 
parameters of HRV from studies retrieved from a literature 
search of the Web of Science database using the keywords 
“HRV in rat.” HRV parameters that were reported as base-
line or control values were summed and means were cal-
culated. In some studies, HRV parameters were reported 
from the time domain and in others from the frequency 
domain and, in some cases, HRV was assessed using both 
methods. Most of the studies described changes in HRV 
only in graphical form without reporting actual numerical 
values, or only changes in HRV were noted.

3.1  |  Evaluated groups

Female, juvenile, and old animals were excluded from 
the study. The age of the rats ranged from 3 to 4 months 
(i.e., sexually mature male rats). Rat strain and telemetry 
equipment for HRV measurements were not taken into 
account. The length of the records from which HRV was 

evaluated was only described in some methodologies; as 
such, taking this factor into account was highly problem-
atic. For a clearer comparison of HRV parameters, we cre-
ated the following groups: control group—awake or freely 
moving animals, HRV was measured telemetrically before 
the experiment itself; and sham group—awake or freely 
moving animals, in which the animals, after the introduc-
tion of telemetric sensing, underwent surgical preparation 
for the ongoing experiment, but without subsequent tar-
geted experimental intervention.

The most frequently used frequency-domain parame-
ters (LF power, HF power, LF/HF ratio, LFnu, HFnu and 
total spectral power (TSP)) and time-domain parameters 
(RR interval, SDNN and rMSSD) from selected studies 
were evaluated and compared.

3.2  |  Statistical analysis

Data are expressed as mean ± standard deviation (SD). 
Data were analyzed using InStat (GraphPad). The Tukey–
Kramer test was used to compare data from the groups, 
and differences with p < 0.05 were considered to be statis-
tically significant. Correlations were calculated as correla-
tion coefficients, in which the coefficient was statistically 
significant in the range of −0.4 to −1 and from +0.4 to +1.

4   |   HRV: CONTROL 
(BASELINE) VALUES FROM 
FREQUENCY-DOMAIN ANALYSIS

Experimental designs are always based on control or refer-
ence values, which fully apply to the activities of the auto-
nomic nervous system. The autonomic nervous system of 
the rat is very sensitive to various external stimuli and/or 
those from the internal environment, which can signifi-
cantly alter the activity of the autonomic nervous system at 
the beginning of an experiment. Therefore, it is necessary to 
carefully consider preparation of the animal for the experi-
ment itself and to determine which values to define as the 
starting point (i.e., baseline) if the desire is to assess not only 
changes in the autonomic nervous system themselves but 
also changes in relation to the monitored parameter.

In in vivo experiments involving awake or freely mov-
ing animals, baseline values are used from sham groups, 
when the animals, in addition to the implantation of 
electrodes for continuous ECG recording, are also sub-
jected to other surgical procedures as preparation for 
the further course of the experiment, but without sub-
sequent targeted experimental intervention. For exam-
ple, preparation for coronary or femoral artery occlusion 
(Aires et al.,  2017; De La Fuente et al.,  2013; Nobre 
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et al., 2006), catheterization (Beckers et al., 2006; Blanco 
et al.,  2015; Fiorino et al.,  2012; Krüger et al.,  1997, 
2000; Mostarda et al., 2009; Müller-Ribeiro et al., 2017; 
Quagliotto et al., 2015; Ramaekers et al., 2002; Ribeiro 
et al.,  2021; Sallam et al.,  2016, 2017; Shi et al.,  2020; 
Simoes et al.,  2016), ligation (Lima et al.,  2018; Maida 
et al.,  2017; Ruiz et al.,  2014; Wang et al.,  2016), bile 
duct ligation (Haddadian et al., 2013), cannulation (Bel-
trán et al., 2020; Da Silva et al., 2002; Neto et al., 2017; 
Sant'Ana et al., 2011), implantation of stimulators (Dai 
et al., 2020; Domingos-Souza et al., 2021), or if they have 
already been administered substances beforehand (Lo 
Giudice et al., 2002).

Although the animals used in these experiments un-
dergo a recovery phase (when antibiotics and analgesics 
are administered), it is not reported anywhere whether 
the autonomic nervous system modulation over the heart 
“returns to normal” after recovery from surgical interven-
tions or whether the changes persist from a longer-term 
perspective. The overall recovery time after surgery can 
be a problem. In the methodologies, this time varies from 
1 hour to 3–4 weeks and is likely dependent on the severity 
of the intervention.

In control group, HRV was measured telemetrically be-
fore the experiment itself in awake and freely moving male 
animals (Carll et al., 2012; Choudhary et al., 2018; Coud-
erc et al., 2002; Fazan Jr. et al., 2015; Hazari et al., 2021; 
Imai et al., 2008; Koizumi et al., 2011; Lamb et al., 2012; 
Lin et al.,  2016; Mamalyga,  2013; Mangin et al.,  1998; 
Pereira-Junior et al., 2006, 2010; Saalfield & Spear, 2014; 
Shi et al., 2017; Soler et al., 2018; Towa et al., 2004; Tsai 
et al., 2020; Yang et al., 2019; Zajączkowski et al., 2014). If 
we assume that the location of implantation (subcutane-
ous on the back or intra-abdominal) and the length of re-
covery do not play a role, then theoretically we can assume 
that these values could approach the “missing” reference 
values, although unfortunately, only for males and at the 
given time of measurement. On the contrary, also during 
electrode implantation itself, the animals are anesthetized 
using different types of anesthetics (pentobarbital, ket-
amine/xylazine, urethane, and isoflurane), while general 
anesthesia is known to suppress HRV in human (Matchett 
& Wood, 2014) and also in animals (Mäenpää et al., 2007).

To determine whether there are any differences be-
tween sham and control groups, we focused only on 
some evaluated parameters from the frequency-domain 
analysis. Differences in baseline values are reported in 
Table 1 and Figure 1. In the control group, although the 
HF power (representing the modulation of the parasym-
pathetic) prevails, the LF/HF ratio points to a state in 
which the sympathetic is significantly dominant. The 
dominant sympathetic effect is also indicated by the 
value of LFnu (normalized unit represents the relative T
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value of the LF component of HRV in relation to TSP), 
which is higher than HFnu (normalized unit represents 
the relative value of the HF component of HRV in re-
lation to TSP), in contrast to the sham group, in which 
LFnu is lower than HFnu (Table 1, Figure 2). Based on 
averaged data, it appears that total HRV (presented by 
TSP) is reduced in the sham group, although not sig-
nificantly. Could this mean that the autonomic nervous 
system in a rat sham group is less sensitive to various 
manipulations or interventions than the control group? 

However, this only occurs during the light (i.e., inactive) 
period of the rat regimen day, when the experiments 
were performed.

4.1  |  HRV: control (baseline) values from 
time-domain analysis

Similar to investigations that analyzed changes in autonomic 
nervous system activity using frequency-domain analysis, 

F I G U R E  1   Mean ± SD values of individual frequency HRV parameters from conscious male rats (sham and control). VLF, very low 
frequency of HRV (VLF-sham n = 6; VLF-control n = 8) LF, low frequency of HRV (LF-sham n = 34; LF-control n = 18); HF, high frequency 
of HRV (HF-sham n = 36; HF-control n = 19); TSP, total spectral power of HRV (TSP-sham n = 12; TPS-control n = 8).

F I G U R E  2   Mean ± SD values of 
LFnu and HFnu conscious male rats 
(sham vs. control). LFnu (LFnu-sham 
n = 26; LFnu-control n = 4) and HFnu 
(HFnu-sham n = 24; HFnu-control 
n = 4)—normalized units represent 
the relative value of the HF and LF 
components of HRV in relation to TSP 
(after subtracting VLF power).



      |  5 of 10ŠVORC JR et al.

other studies have used time-domain analysis of HRV. As 
in frequency-domain studies, baseline values not only in 
sham groups were used (Abulaiti et al., 2011; De La Fuente 
et al.,  2013; Houshmand et al.,  2017; Krüger et al.,  1997, 
2000; Lima et al.,  2018; Müller-Ribeiro et al.,  2017; Sal-
lam et al.,  2016, 2017; Silva, Geraldini, et al.,  2017; Silva, 
Silva, et al.,  2017; Soler et al.,  2018; Wang et al.,  2016;  
Xu et al., 2020), but also from groups in which the values 
were recorded only before the experimental intervention 
itself and the animals did not undergo surgical preparation 
(control) (Barbier et al., 2006; Beckers et al., 2006; Beltrán 
et al., 2020; Couderc et al., 2002; Farraj et al., 2009; Fazan 
Jr. et al., 2015; Hashimoto et al., 1999; Hazari et al., 2021; 
Koresh et al., 2016; Lamb et al., 2012; Lin et al., 2016; Maida 
et al.,  2017; Mangin et al.,  1998; Mostarda et al.,  2009; 
Pereira-Junior et al., 2010; Powell et al., 2021; Ramaekers 
et al.,  2002; Ribeiro et al.,  2021; Saalfield & Spear,  2014; 
Scridon et al.,  2012; Shi et al.,  2017; Simoes et al.,  2016; 
Zajączkowski et al., 2018).

From data obtained from individual studies involving 
male rats, significant differences (p < 0.001) have been 
found in the duration of RR intervals between the sham 
and control groups, while the duration of RR intervals 
varied depending on parasympathetic activity (rMSSD) 
in both groups (sham group, r = −0.58; control group, 
r = −0.96; Table 2). Based on comparison of the calculated 
correlation coefficients from both groups, we can only 
speculate that, in the control group, heart rate is practically 
and completely dependent on changes in parasympathetic 
activity, while in the sham group, changes in heart rate 
can also be the result of the action of other mechanisms. 
The contribution of the sympathetic nervous system to the 
duration of the RR intervals from the given data is unclear. 
Regarding the contribution of total HRV (SDNN) to the 
duration of RR intervals, a moderate significant depen-
dence was found only in the control group (sham group, 
r = −0.15; control group, r = 0.49; Table 2, Figure 3).

5   |   DISCUSSION AND 
CONCLUSION

Results from each of the cited studies are, of course, ex-
cellent. It is obvious in experimental studies that when 
evaluation of any changes in monitored parameters, it 
should be based on the control or baseline values. How-
ever, the question remains as to why there is so much 
variability in these values. A follow-up question would be 
to what extent the control or baseline values can be—or 
they are—changed already at the beginning of the experi-
ment itself.

One of the possible problems of great variance HRV 
may be the nonuniformity in frequency ranges, from 
which VLF, LF, HF, and TSP are calculated (Table 3). There 

T A B L E  2   Mean (± SD) values of time-domain HRV parameters 
from conscious male rats.

Group Mean RR (ms) SDNN (ms) rMSSD (ms)

Sham 157.6 ± 14.5  
(n = 15)

7.93 ± 3.92 
(n = 11)

4.89 ± 1.93 
(n = 7)

Control 170.7 ± 23.2  
(n = 13) p < 0.001

9.48 ± 6.75 
(n = 25)

4.99 ± 2.24 
(n = 23)

Note: Sham—animals which, in addition to the implantation of electrodes 
for continuous electrocardiographic recording, also underwent other 
surgical interventions, but without targeted experimental intervention; 
Control—animals that only underwent implantation of electrodes; 
n = number of measurements from which the average value was calculated. 
p < 0.001 statistically significant difference between sham and control 
groups.

F I G U R E  3   Averaged values of 
SDNN and rMSSD from conscious male 
rats (sham and control). SDNN (ms) 
(SDNN-sham n = 11; SDNN-control 
n = 25)—a frequently used index of 
total HRV identical to TSP. rMSSD (ms) 
(rMSSD-sham n = 7; rMSSD-control 
n = 23)—higher rMSSD values indicate 
greater parasympathetic activity.
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is also inconsistency in the use of units for HRV frequency 
parameters, because some investigators have described 
them in ms2, some in ms2/Hz, some only in ms, and some 
not at all. It is assumed that algorithms for the calculation 
of single frequency and time parameters of HRV should 
be constant; as such, calculation from different frequency 
ranges can be one of the causes of variability, because 

there are enormous differences in the reporting of val-
ues, which, in some studies, can differ by orders of mag-
nitude (Chang et al., 2011; Fabiyi-Edebor, 2020; Malliani 
et al., 1991; Zhu et al., 2018).

Another problem may be the fact that many method-
ologies do not describe the interval duration from which 
individual HRV parameters were evaluated. Different 

Author VLF (Hz) LF (Hz) HF (Hz) TSP (Hz)

Krüger et al. (2000, 1997) 0.5–0.8 ≥0.8

Mangin et al. (1998) 0.2–1 1–3

Zajączkowski et al. (2014, 2018)
Pereira-Junior et al. (2006, 2010)

0.2–0.8 0.8–2.5

Fazan Jr. et al. (2015) < 0.2 0.2–0.8 0.8–2

Shi et al. (2017) 0.04–0.6 0.6–2.4

Mamalyga (2013) 0.02–0,8

Carll et al. (2012) 0.2–0.8 0.8–2

Koizumi et al. (2011) 0.3–0.8 0.9–3.3

Imai et al. (2008)
Towa et al. (2004)

0.04–1 1–3

Shi et al. (2020) 0.01–0.04 0.1–1 1–3

Ramaekers et al. (2002)
Beckers et al. (2006)

0.2–0.7 0.8–2.5

Couderc et al. (2002) 0.1–0.7 0.7–2

Beltrán et al. (2020) 0.04–0.6 0.6–2.4

De La Fuente et al. (2013) 0–0.2 0.2–0.8 0.8–4

Mostarda et al. (2009)
Quagliotto et al. (2015)
Blanco et al. (2015)
Simoes et al. (2016)
Müller-Ribeiro et al. (2017)

0–0.2 0.2–0.8 0.8–3

Lo Giudice et al. (2002) 0.03–0.2 0.2–0.6 0.60–3

Ribeiro et al. (2021)
Aires et al. (2017)

0.2–0.8 0.8–3

Dai et al. (2020) 0.3–0.8 0.8–4

Wang et al. (2016) 0.1–0.6 0.6–3

Sallam et al. (2016, 2017) 0.3–0.8 0.8–3

Abulaiti et al. (2011)
Lin et al. (2016)

0.003–0.04 0.04–0.2 0.2–0.4 < 0.4

Lima et al. (2018)
Chang et al. (2011)

0.04–0.2 0.2–0.4

Yang et al. (2019)
Tsai et al. (2020)

0.02–0.2 0.2–0.6 0.6–3 0–3

Hazari et al. (2021) 0.2–0.8 0.8–3.5

Da Silva et al. (2002) 0.2–0.8 0.8–2.5

Fiorino et al. (2012) 0.2–0.6 0.6–3

Neto et al. (2017)
Maida et al. (2017)

0.01–0.2 0.2–0.8 0.8–3

Sant'Ana et al. (2011) 0.01–0.2 0.2–0.85 0.8–2.5

Zhu et al. (2018) 0.003–0.04 0.04–0.2 0.2–0.4 0–0.5

T A B L E  3   Values of frequency range 
from individual authors.
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methods of HRV acquisition and evaluation, as well as sex, 
use of anesthesia during telemetry device implantation, 
recovery period, and time when the measurement was 
performed may also be problems (Svorc Jr. et al., 2023).

Analysis of baseline or control values reported in the 
cited studies clearly reflect wide disparity, and there are 
no “normal” or standardized reference values for HRV pa-
rameters in rats from frequency-domain or time-domain 
analyses of HRV obtained in a specifically defined time 
of measurement. Therefore, we believe that unequivocal 
conclusions should not be drawn, especially those regard-
ing the autonomic nervous system and should, therefore, 
be offered cautiously.
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